Specificity-enhanced hot-start PCR: addition of double-stranded DNA fragments adapted to the annealing temperature.

نویسندگان

  • P Kainz
  • A Schmiedlechner
  • H B Strack
چکیده

A new method to produce hot-start conditions in PCR is described. Short double-stranded DNA fragments were found to inhibit the activity of DNA polymerases from Thermus aquaticus and Thermus flavus. This inhibition is not sequence specific, but exclusively dependent on the melting temperature of the fragments as shown by its correlation to their melting curves as measured. This property is exploited by adding fragments of the appropriate length to the PCR mixture during the reaction setup and thereby preventing the DNA polymerases from extending primers annealed nonspecifically at lower than the optimal temperature. By amplifying ten copies of phage lambda DNA in the presence of 2 micrograms of nonspecific DNA, it is shown for three different primer pairs how the melting temperatures of the double-stranded DNA fragments have to be adapted to the cycle profiles to obtain predominantly specific products in the 0.5 microgram range.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Effects of Atmospheric Pressure Plasma Jet on the Double-Stranded DNA

Introduction The aim of this study was toinvestigate the sterilization potential of atmospheric pressure plasma jet (APPJ) and interactions of this technology with double-stranded DNA using the polymerase chain reaction (PCR) and single-strand conformation polymorphism (SSCP) techniques. Materials and Methods The plasma jet was produced through a high voltage sinusoidal power supplyusing a mixt...

متن کامل

Challenges to Design and Develop of DNA Aptamers for Protein Targets. I. Optimization of Asymmetric PCR for Generation of a Single Stranded DNA Library

Aptamers, or single stranded oligonucleotides, are produced by systematic evolution of ligands by exponential enrichment, abbreviated as SELEX. In the amplification and regeneration step of SELEX technique, dsDNA is conversed to ssDNA. Asymmetric PCR is one of the methods used for the generation of ssDNA. The purpose of this study was to design a random DNA library for selection of aptamers wit...

متن کامل

Challenges to Design and Develop of DNA Aptamers for Protein Targets. I. Optimization of Asymmetric PCR for Generation of a Single Stranded DNA Library

Aptamers, or single stranded oligonucleotides, are produced by systematic evolution of ligands by exponential enrichment, abbreviated as SELEX. In the amplification and regeneration step of SELEX technique, dsDNA is conversed to ssDNA. Asymmetric PCR is one of the methods used for the generation of ssDNA. The purpose of this study was to design a random DNA library for selection of aptamers wit...

متن کامل

Isolation of the Gene Coding for Movement Protein from Grapevine Fanleaf Virus

A pair of degenerate primers, GMPF1 and GMPR1, was designed on the basis of alignment of previously reported Grapevine fanleaf virus (GFLV) movement protein (MP) nucleotide sequences from Iran and other parts of the world. cDNA was synthesized by the use of Oligo d(T)18 from total RNA extraction from each diseased grapevine leaf sample and subjected to polymerase chain reaction (PCR) with the d...

متن کامل

Maximizing sensitivity and specificity of PCR by pre-amplification heating

We have found that assembling the reaction mixture at a temperature greater than the annealing temperature improved both product yield and specificity of PCR. When reactions were maintained at 70°C in a dry heating block during addition of denatured samples to aliquotted reagent master mix, a reproducible increase in product yield was observed compared to duplicates maintained at room temperatu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • BioTechniques

دوره 28 2  شماره 

صفحات  -

تاریخ انتشار 2000